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Abstract-The dynamic structural contact problems ofa rigid, smooth cylindrical striker impacting
an elastically supported transversely isotropic beam and plate are solved. The solutions are obtained
as a superposition of a static layer solution derived through the use of integral transforms with an
elementary beam or plate theory solution that incorporates the dynamic effects. The problems are
formulated in such a manner as to require the solution ofa Volterra integral equation for each time
step. Numerical results are presented for fixed and simply supported beams and plates. Three
materials are used to study the effects ofanisotropy : magnesium, which is nearly isotropic; cadmium,
which is moderately anisotropic; and graphite/epoxy, which is highly anisotropic.

I. INTRODUcrlON

The transverse impact of beams and plates has long been a problem of theoretical and
practical interest in applied mechanics research. Dynamic impact theory has been used to
model and study a variety of impact phenomena, including studies of car impact on
highway guardrails[l], structural response to blast loadings such as sonic booms[2] and
shot peening[3,4], delamination of composite members due to impact[5], erosion of metal
surfaces by solid particle impact[6,7], and impact response of gears and turbine blades[8].
These studies approximated local impact stresses with Hertzian stress distributions.
However, prior static and dynamic beam and plate indentation studies[9-14] have shown
that these local stresses will differ significantly from Hertzian distributions when the contact
region is relatively large. Consequently, a wide variety of local effects that can significantly
influence dynamic response[15] have been systematically neglected.

The purpose of this study is to extend the technique used in the static beam and plate
indentation studies to problems of dynamic indentation. In this manner the forthcoming
solution will account for the global behavior of the beam or plate and will include the effects
of local impact stresses and strains as well.

2. SEcrlON I: DYNAMIC IMPAcr OF A FINITE BEAM

2.1. Introduction
In this section we examine the low velocity impact of a rigid cylindrical projectile on

a finite elastically supported transversely isotropic beam. The geometry of the problem is
shown in Fig. 1. Only low velocity impact is considered in order to avoid complications

Fig. I. Problem configuration.
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that may result from high velocity impact, such as puncture or penetration. In this manner,
local deformations between the impactor and the beam can be said to occur elastically[ 16].
If the impact velocity is low enough, the deformations can be assumed to occur quasi­
statically. Under this assumption, elastodynamic effects are negligible when compared to
dynamic beam effects and are therefore neglected. It has been shown[17, 18] that such
presumptions are permissible under the circumstances of the problem and do not adversely
affect the accuracy of the results.

The solution to the present problem is obtained as the superposition of an elasticity
layer solution with two beam theory solutions, one static and one dynamic. The super­
position of the elasticity solution with the static beam solution results in a static solution
similar to the one developed by Keer and Ballarini[IO]. The dynamic beam theory solution
is a standard solution that incorporates structural dynamic effects[19]. Although the static
component, which gives local stresses, is often neglected in the study of impact phenomena,
it is expected that in cases of large area contact its contribution will be the same order of
magnitude as that derived from the dynamic bending solution. Furthermore, the static
solution gives an accurate representation of the contact phenomenon, including the local
stresses as well as the behavior near the edges of the contact region. The static component
must therefore be included in the analysis. Superposition of the two solutions and the
matching of boundary conditions lead to a Volterra integral equation of the second kind.
The unknown contact length and pressure distribution at each instant of time are obtained
using a technique that combines a standard numerical scheme for Volterra integral equa­
tions[20] with the technique developed by Ahmadi et al.[21] for the solution ofnon-Hertzian
contact problems. Once the contact pressure is obtained, then all relative field quantities
can be readily calculated. By varying the initial impact velocity and the ratio of beam mass
to projectile mass, an extensive study of the response of a transversely isotropic beam to low
velocity impact is performed. To assess the effects of anisotropy on the beam's response,
solutions are obtained for three materials: magnesium, which is nearly isotropic; cadmium,
which is highly anisotropic; and unidirectional graphite/epoxy, the elastic properties of
which are assumed to be representable by a transversely isotropic material[22].

It should be noted that because the impact velocity is low and we are sampling bend­
ing stresses at midspan, the approximations of Euler-Bernoulli beam theory are valid and
its use in the construction of the static layer solution should yield accurate results[23,24].
Furthermore, because the duration of impact is expected to be of the same order of
magnitude as the fundamental period of vibration of the beam, it again follows that the
use of the Euler-Bernoulli beam theory should yield satisfactory results[25-28]. However,
if the impact were sharp and the duration of contact very short, or if we were sampling
shear stresses at the supports, then Euler-Bernoulli beam theory approximations would
lose their validity and Timoshenko beam theory would have to be used instead[29-32].

2.2. Problem formulation
2.2.1. Static solution. The boundary conditions for the layer solution are those of an

elastically supported layer of thickness h loaded on the upper surface by a smooth symmetric
rigid indenter (see Fig. I)

!rz(x, h) = 0, Ixl < 00 (1)

!xz(x, h) = 0, Ixl < 00 (2)

!xz(x,O) = 0, Ixl < 00 (3)

!zz(x,O) = 0, c < Ixl < 00 (4)

!zz(x,O) = -p(x), 0< Ixl < c (5)

where c is the semi-contact length and p(x) is the loading due to the indenter. The static
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beam theory boundary conditions are those of an elastically supported beam and are given
by

M-KtJ = 0, x=l (6,7)

where I is the half-length of the beam, M the bending moment, K the elastic spring constant
at the ends of the beam, and tJ is the value of the slope averaged through the thickness

(8)

A suitable elasticity solution that represents a general loading on the upper surface of
an elastic, transversely isotropic layer and no loading on the lower surface can be obtained
using the techniques of Green and Zema[33], and Sneddon[34], and is found to be

f'XJ E(~)cos (~x)
Tzz = Jo D(~) {,JVI I(~)cosh (~z/,Jvl)+,Jv2H(~)cosh (~Z/,JV2)

- G(~)[,JVI sinh (~z/,Jv I) - ,JV2 sinh (~Z/,JV2)]} d~ (9)

(<>0 EW sin (~x). .
LXZ = - Jo D(~) {I(~) smh (~z/,Jv1)+ H(~) smh (~Z/,JV2)

-G(~) [cosh (~z/,Jvd-cosh (~Z/,JV2)]) d~ (10)

(OOE(~)COS(~X){ I(~) H(~)
LXX = Jo D(~) - ,Jv, cosh (~Z/,JVI) - ,JV2 cosh (~Z/,JV2)

+G(~) [jvI sinh (~Z/,JVI) - j
V
2sinh (~z/,JV2)J}d~ (11)

Ux = - _1 (00 E(~~~~~~~X) {I~~),JVI cosh (~Z/,JVI) + ~(~),JV2 cosh (~Z/,JV2)
C44 Jo +KI +K2

-G(~) [I,JVI sinh (~Z/,JVI) - I,Jv2 sinh (~Z/,JV2)J}d~ (13)
+K 1 +K2

where

(14)

(15)
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I(~) =JC:) (ch PI chP2 -l)-sh PI sh f32

(16)

(17)

and f3i = ~h/JVi; EW is an as yet unknown function of the applied loading. The material
constants Vi and "i are obtained using the technique outlined in Ref. [33]. The Vi are the
roots of the equation

(18)

where the Kij are constant functions of the layer moduli Cij and whether the layer is in a
state of plane strain or plane stress. If a state of plane strain is assumed, then Kij = Cij; if
plane stress is assumed, then K I1 = CII -cf2/c l I> K I3 = CI3 - CI2 C J3/CI I> K 33 = C33 - cf3/

Cl I> and K 44 = C44·

It is seen that on z = h the normal and shear stresses vanish automatically as does the
shear stress on z = O. The normal stress on z = 0 is given as

(19)

Substituting eqn (19) into eqns (4) and (5) and applying a Fourier cosine transform yields

21e

EW = - - p(x) cos (~x)dx.
1t 0

The moment and average slope due to this layer solution are found to be

where

(20)

(21 )

(22)

The static beam theory solution is taken in the form of a quadratic pure bending
displacement solution by

1 2
Uz(X) = lAx +B. (24)

Assuming the hypotheses of the Euler-Bernoulli beam theory, the following expression for
moment and average slope are obtained:
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(fa = Ax

875

(25)

(26)

where D*=h3(cll-d3/c33)(1-n2)/12, with n=O for plane strain and n=(cI2-d3/
C33)/(C II - d3/C33) for plane stress. The constants A and B are obtained by superimposing
appropriate beam theory expressions with corresponding elasticity expressions and applying
the beam theory boundary conditions given by egns (6) and (7). The resulting expressions
are

(27)

where IX* = KI/D * is a dimensionless parameter measuring support stiffness.
Superposing eqns (12) and (24) and making use of egns (20), (27) and (28), the total

displacement as expressed in terms ofp(x) is

uz(x,O) = _1_ rc
p(x') roo {2D* (_"_1__ ~)G(e) cos (ex)-cos (el)

nD* Jo Jo C44 1+"1 1+"2 D(e) e

where the difference luz(x, 0) - uz(x, h)1 is assumed to be negligibly small.
It is seen from an asymptotic analysis that the integrand in curly brackets is bounded

as e-+ 0, but is unbounded as e-+ 00. After adjusting the improper behavior at infinity,
egn (29) becomes

I rc
, [ Ix+x'llx-x'l nlX* P-x

2J '
uz(x,O) = - ~ Jo p(x) <5 1 log Il+x'111-x'l + <5 2 I +IX* ---vil dx

1 rc

+ nD* Jo p(x')K(x, x') dx'

where

(30)

(31)

(32)
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2.2.2. Dynamic beam theory solution. We assume that the pressure distribution is
symmetric with respect to x :::= 0 so that only the right half of the beam (i.e. 0 < x < I) is
considered. By using a Laplace transform technique and a normal mode expansion[19], the
deflection of a transversely isotropic beam initially at rest is found to be

1 00 Y (x) 11 l'uz<x,t):::= h L~ Yn(x') p(x',r)sin[w:(t-r)]drdx'
p n= I Wn 0 0

(34)

where w: :::= P;.j(D*/ph) and p is the mass density of the beam material. Expressions for
the natural frequencies Pn and normal modes Yn considered are given for arbitrary a:* by
eqns (34)-(37) in Ref. [14].

2.2.3. Superposition solution-integral equation for the dynamic problem. Superposing
eqns (30) and (34), the total dynamic displacement is given by

1 rC(/) , [ Ix+x'llx-x'l 1ta:* 12
_X

2
] ,

uz(x,O,t):::= --;Jo p(x) c5llogl/+x'lll_x'l +c521 +a:*2hi dx

I iC(1) I i'iC(f) 00 Y (x)Y (x')
+ D* p(x')K(x, x') dx' + -h p(x', r) L n :

1t 0 P 0 0 n= I W n

x sin [w:(t - r)] dx' dr. (35)

In the contact region, we have

uz(x, 0, t) :::= !i.(t) - x 2/2R, 0< x < c(t) (36)

where !i.(t) is the relative approach (a function of time, as is the contact region) and R is
the radius of curvature of the projectile. An additional equation is obtained from Newton's
equation of motion

(37)

where mp is the mass of the projectile per unit length. If the projectile has an initial velocity
V, then eqn (37) can be integrated twice to yield

M r' rC(f)
!i.(t):::= Vt - phljo (t-r) Jo p(x',r)dx'dr (38)

where M is the ratio of the mass of the beam to that of the projectile. Substituting eqns
(36) and (38) into eqn (35) and rearranging terms yields the integral equation in p(x, t) for
the impact problem

1 lC(/) I lC(/)
-* p(x', t)K(x, x') dx' - - p(x', t)L(x, x') dx'
1tD 0 1to

1 r' rC(f) M r rC(f)
+ phJo Jo p(x',r)M(x,x',r)dx'dr + phljo (t-r) Jo p(x',r)dx'dr

= Vt - x 2/2R (39)

where
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, Ix+x'llx-x'l 1t0:* P_X2

L(x,x) = <5 1 log I/+x'lI/-x'l +<5 21 +0:* ---vzJ

, ex> Yn(X)Yn(X') .
M(x,x,t) = L * sm[wn*et-t)].

n-I wn

877

(40)

(41)

2.3. Numerical solution
In solving eqn (39) numerically, first the order of integration and summation is inter­

changed. Expanding the kernel M(x, x', t) and rearranging yields

1 ICII) 1 ICII)
D

* p(x', t)K(x, x') dx' - - p(x', t)L(x, x') dx'
1t 0 1to

1 ex> Y (x) { I' [IClr) ]+ Ii L~ sin (w:t) cos (w:.) p(x', t)Yn(x')dx' dt
p n_1 W n 0 0

-cos (w:t) l' sin (w:t) [fIr)p(x', t)Yn(X')dx-]dt}

M (, [ (*) ]
+ phi Jo (t-t) Jo p(x', t)dx' dt = Vt-x2/2R. (42)

For the integration over time, the domain is partitioned into evenly spaced intervals. Then,
at time-step tk eqn (42) can be written as

('. } M ('.
-cos (w:tk ) Jo f,,(t)sin(w:t)dt + philo (tt-t)g(t) dt

=Vtk-x2j2R (43)

where

Q(x, x') = D
1
*K(x, x') - ~ L(x, x')

1t 1t

(cIt)
f,,(.) = Jo p(x', t) Yn(x') dx'

(cIt)
g(t) = Jo pex',t)dx'

(44)

(45)

(46)

and Ck = C(tk)' Performing the integration over time numerically, eqn (43) is rewritten as

where
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/,,(1,) = I"~ {I(/. I,) r,,(x') dx'
o

(4X)

(49)

and Wk" Wk" wit, are the weights of the integration scheme. The derivation of these weights
is shown in the Appendix.

At each time-step, the contact length is divided into N equal segments of length dX
and overestimated. An iterative procedure[21] is then used to determine the actual contact
length and pressure distribution for that time-step. In this procedure, the pressure dis­
tribution is assumed to be piecewise constant, that is

(50)

where xi = (j-l/2)dX,j = 1,2, ... ,N. Under this assumption, eqns (48) and (49) become

where

N,

/(1,) = L pylI.(x)
J~ I

N,

get,) = L py)
J~ I

(51 )

(52)

(53)

and N, is the number of segments in the contact length of the lth time-step. Substituting
eqns (51) and (52) into eqn (47) yields the discretized form of the integral equation for the
dynamic impact problem

where

(55)

(56)

and i = 1,2, ... , Nk •

As is typical of numerical solutions of Volterra integral equations, the scheme is a step­
by-step one: the pressure distribution and contact length are unknown only in the current
time-step. With this in mind, eqn (54) reduces to
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Table I. Elastic moduli (in N m- 2)

Magnesium Cadmium Graphite/epoxy

C" 5.587 x 1010 10.920 x 1010 15.000 x 1010

Cl2 2.501 X 10'" 3.976 X 10 '0 0.856 X 1010

ClJ 2.079 X 10'0 3.754 X 1010 0.891 X 1010

CB 6.IIOx 10'0 4.602 x 1010 1.844 X 1010

c•• 1.658 X 1010 1.562 X 10'0 0.323 X 1010

879

where

N,

" A~k)plk) = B(k)
~ I)) I ,

j= I

i = 1,2, ... ,Nk (57)

(58)

(59)

It should be noted that a numerical solution of a Volterra integral equation is highly
sensitive to the starting value of the scheme. In order to reduce subsequent errors, the
starting value is modified as suggested in Ref. [20]. The first and second time-steps are taken
to be at time t = I1t/4 and I1t/2, respectively. After that, the solution proceeds in the usual
manner.

2.4. Elementary beam theory solutions
The numerical results obtained in the solution of eqns (57)-(59) are compared with

those obtained from an elementary beam theory analysis[35]. In this analysis it is assumed
that the impact occurs inelastically and that the projectile and a certain portion of the beam
mass impulsively attain the same velocity immediately after impact. It is further assumed
that the dynamic transverse displacement is geometrically similar to the static displacement
curve. Under these conditions, the maximum transverse displacement is found to be

and the duration of impact is

u~.max = Vt/.j«eM+ I)M)

to = Ttt.j«eM+ l)/M)

(60)

(61)

where t = .j(2phl/k), e is the fraction of the beam mass that moves with the projectile at
the same velocity after impact, k is the static load required to produce a unit deflection (i.e.
the static stiffness) at the center of the beam, and V, M are as defined in eqn (38). The
values of e and k depend on the support conditions of the beam. For the end conditions in
subsequent numerical calculations, they are given as follows:

simply supported ends

clamped ends

e = 17/35, k = 6D*/P

e = 13/35, k = 24D*/P.

(62)

(63)

2.5. Observations and conclusions
Three materials were chosen for this study: magnesium, cadmium and unidirectional

graphite/epoxy. The elastic moduli of these materials are listed in Table 1. For each material,
solutions were obtained for simply supported and clamped end conditions, and for impact
velocities of I and 5 m s- I ; the mass ratio M was varied from 0.5 to 2.5. In each case, the
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Fig. 2(a). Force history, simply supported beam, V = 1 m s· I (--, magnesium; - - - -",
cadmium; , , , , " graphite/epoxy).
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Fig. 2(b). Non-dimensionalized force history, simply supported beam, V = 1 m s·', M = 0.5
(--, magnesium; - _.. ", cadmium; , , , , " graphite/epoxy).

geometrical parameters used were the same as those in the isotropic study: R = 40 em,
f = 10 em, and h = I em. The mass densities of the materials are 1740 (magnesium), 8650
(cadmium), and 1384 kg m- 3 (graphite/epoxy). It should be noted that, although the
formulation of the equations in this section is such that they can be adapted to plane stress
or plane strain, the use of beam theory equations in the superposition solution dictates that
conditions of plane stress should be assumed in the evaluation of the constants Kij in eqn
(18), Furthermore, although a non-dimensional formulation would render the problem
and its solution applicable to a wider variety of geometric configurations, the physical
understanding for the relative magnitudes of forces, displacements, impact times, etc. in
such a solution would be lost (see, e.g. Fig. 2(b) and compare with Fig, 2(a». Hence, results
were obtained in terms of real parameters. However, if a non-dimensional solution is
desired, it may be obtained by solving eqn (39) after it has been put in dimensionless form
using the following scheme;

tJ = x/h, A= f/h, rx = R/h (64a-<:)

(J(t) = c(t)/h, (64d,e)
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Table 2. Scaling factors

881

Non-dimensional
quantity

Contact length
Displacement

Pressure
Force

6.75

Multiply
by

h
II

(c ll -c12)/2
h(c ll -c,2)/2

7.50

'i
::IE 6.25

Q
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\
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\
\
\ '\
\ I \

M=1.5 '.... \
\
t
I
I
I
I

50

Fig. 3. Contact length history, simply supported beam, V = I m s I (--, magnesium; - - - --.
cadmium; •••••, graphite/epoxy).

rr(11, t) = 2p(x/h, t)/(c I I - c 12), Wz(11,0, t) = uAx/h, 0, t)/h. (64f, g)

Non-dimensional curves and numbers can then be converted to real values by using the
scaling factors given in Table 2.

The numerical results of this study are presented in the form ofhistory curves and data
comparison tables. The results for the simply supported beams are shown in Figs 2-7;
those for the clamped beams are shown in Figs 8-10. Figures 2, 4 and 8 show contact
force histories for the various impact velocities and mass ratios; Figs 3, 5 and 9 show
contact length histories for the same impact velocities and mass ratios. Figures 6, 7 and 10
show typical contact pressure distributions. The peak normal stresses developed under the
indenter for the various materials and end conditions are shown in Table 3; Tables 4 and
5 show a comparison between the numerical results and the values predicted by elementary
beam theory for maximum transverse displacement and duration of impact.

From an examination of Figs 2-5, 8 and 9, when M> 1.0 (i.e. the beam is more
massive than the projectile), the contact force and length histories are seen to have two
peaks. This indicates that the beam is sufficiently flexible so that it achieves its maximum
deflection after the contact area has reached its maximum value and has begun to diminish.
After reaching its maximum deflection, the beam releases its stored energy and causes the
projectile to reverse its trajectory. In this manner a new force maximum is achieved. For
the largest value of the mass ratio, M = 2.5, in some cases the beam actually loses contact
with the projectile and a second impact is observed (see, e.g. Fig. 7). However, there was
no separation in those cases where a projectile was impacting a clamped beam. Clamped
beams are not as flexible as simply supported ones and are thus less likely to give rise to
double or multiple hit phenomena. This behavior is the same as that which was observed



W I' SCIIONIlUll; 1'/ 0/

385

33.0

275

Z
N 22.0
Q

'"~ 16.5
o
u.

5.0
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Fig. 7. Contact pressure distribution; simply supported cadmium beam, M = 2.5, V"" I m s- I.
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Fig. 8. Force history, clamped beam, V = I m S-I (--, magnesium; ••• _., cadmium;"""
graphite/epoxy).

in the isotropic study[l4] and in a recent study on the impact response of composite
laminates[36]. In the cases where M < 1.0 the contact force and length histories are seen to
have three peaks. This indicates that when the projectile is sufficiently more massive than
the beam, it imparts enough energy to the beam so that the beam is able to impact the
projectile twice: once after reaching maximum deflection, and once more during the rebound
process. These figures also show that as M increases, the maximum force and contact length
shift from the second peak to the first peak. This is because during rebound, when M is
small, the lighter beam must transmit a much larger force to the heavier projectile in order
to successfully reverse its trajectory. Moreover, peak contact forces and impact durations
are found to increase as M decreases. This is in agreement with elementary beam theory
predictions and the numerical results obtained in Ref. [36]. Furthermore, a comparison of
the results obtained for different impact velocities reveals that the contact force and beam
displacement histories for different impact velocities are similar in nature except for their
respective amplitudes. The differences in the amplitudes are seen to be approximately
proportional to the relative values ofthe initial impact velocities, which is again in agreement
with the results obtained in Ref. [36]. Lastly the differences in behavior between clamped
and simply supported beams are seen to be consistent with the predictions of elementary
beam theory solutions (Tables 4 and 5).
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Fig. 9. Contact length history, clamped beam, V = I m s - 1 (--, magnesium; •..•., cadmium;
•••• " graphite/epoxy).
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Fig. 10. Contact pressure distribution; clamped cadmium beam, M = 0.5, V = I m s- I.

Table 3. Peak normal stress under the indenter-beam impact ( x 10' N m- 2)

Magnesium Cadmium Graphite/epoxy
Simply Simply Simply

M supported Clamped supported Clamped supported Clamped

0.5 1.843 2.603 2.620 3.690 1.315 1.787
V= I ms- I 1.5 1.324 1.791 1.960 2.601 0.893 1.189

2.5 1.194 1.687 1.789 2.401 0.836 1.121

0.5 3.243 4.438 4.133 5.279 2.557 3.407
V = 5 m S-I 1.5 2.649 3.687 3.770 5.015 1.895 2.639

2.5 2.554 3.518 3.536 4.838 1.733 2.389

From an inspection of the results obtained in this study, it is seen that the effect of
anisotropy on dynamic response is not as apparent as it was in the case ofstatic indentation.
Previously, it was shown[lo-l2] that the higher bending stiffness and lower transverse
stiffness of beams made of highly anisotropic materials produce smaller transverse deflec­
tions, smaller contact forces, and larger contact lengths. As can be seen in Figs 2-5, 8 and
9 and Tables 3-5, this is not necessarily true in the case of dynamic impact. In Table 3.



Table 4. Maximum transverse displacement-beam impact (mm)

Magnesium Cadmium Graphite/epoxy
Simply supported Clamped Simply supported Clamped Simply supported Clamped

Beam Beam Beam Beam Beam Beam
M Elasticity theory Elasticity theory Elasticity theory Elasticity theory Elasticity theory Elasticity theory r-

0

0.5 0.765 0.498 0.386 0.254 I.311 0.848 0.678 0.434 0.399 0.246 0.208 0.127
~

<
V= I ms- I 1.5 0.371 0.244 0.196 0.130 0.635 0.414 0.333 0.218 0.193 0.122 0.107 0.064 "0'

2.5 0.269 0.168 0.140 0.089 0.457 0.284 0.236 0.152 0.139 0.084 0.079 0.043 !::.
~

0.5 3.868 2.487 1.935 1.273 6.518 4.237 3.320 2.169 1.900 1.237 1.036 0.632 13'
'0

V= 5 m S-I 1.5 1.842 1.219 0.973 0.643 3.167 2.073 1.664 1.092 0.965 0.605 0.538 0.320 oo

2.5 1.328 0.833 0.691 0.447 2.283 1.420 1.184 0.762 0.704 0.414 0.383 0.221
!l
0....,-...oo
::s
V>
<
"...V>

".:<
tn·

Table 5. Duration of impact-beam impact (x 10- 2 s) ~
(3
'0

Magnesium Cadmium Graphite/epoxy o'
Simply supported Clamped Simply supported Clamped Simply supported Clamped g-

oo
Beam Beam Beam Beam Beam Beam ~

M Elasticity theory Elasticity theory Elasticity theory Elasticity theory Elasticity theory Elasticity theory oo
::s
0-

0.5 0.270 0.194 0.130 0.095 0.470 0.331 0.220 0.162 0.140 0.096 0.068 0.047 '0

V= 1m S-I 1.5 0.160 0.132 0.075 0.063 0.280 0.225 0.130 0.107 0.080 0.066 0.040 0.031 OJ

"2.5 0.150 0.116 0.065 0.054 0.260 0.197 0.110 0.092 0.075 0.058 0.036 0.027 '"

0.5 0.270 0.194 0.130 0.095 0.470 0.331 0.220 0.162 0.140 0.096 0.068 0.047
V= 5m 5- 1 1.5 0.160 0.132 0.075 0.063 0.280 0.225 0.130 0.107 0.080 0.066 0.040 0.031

2.5 0.150 0.116 0.065 0.054 0.260 0.197 0.110 0.092 0.075 0.058 0.036 0.027

00
00..,.
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Table 6. Contact length rates of expansion-beam impact
(m, ')

Simply
supported Clamped c~

Magnesium 1.3 3.1 3000
Cadmium 2.6 6.1 2000

Graphite/epoxy 6.1 15.2 7150

peak contact stresses of cadmium beams are in fact greater than those of the less anisotropic
magnesium beams, whereas those of the highly anisotropic graphite/epoxy beams are indeed
less than those of the cadmium and magnesium beams. Similarly, in Tables 4 and 5 it is
seen that the maximum displacements and impact times experienced by cadmium beams
are actually larger and longer than those experienced by corresponding magnesium beams,
while the maximum displacements and impact times of graphite/epoxy beams are as
expected. Tables 4 and 5 also show that these response characteristics are in agreement with
the predictions of elementary beam theory. Examination of the beam theory equations
reveals that the maximum transverse displacement and duration of impact are directly
proportional to the square root of the mass of the beam, but inversely proportional to the
square root of its bending stiffness. Thus, while the higher bending stiffness of cadmium
beams should reduce deflections and impact times by approximately 25% as compared to
corresponding magnesium beams, the higher mass density of the cadmium beams will
increase deflections and impact times nearly 125% resulting in a net increase of almost 70%
over magnesium beams. On the other hand, while graphite/epoxy beams are stiffer than
magnesium beams, they are also lighter. This will result in a reduction of deflections and
impact times of graphite/epoxy beams by nearly 50% over corresponding magnesium
beams. Similar arguments can be used to explain the differences in the peak contact stresses
as shown in Table 3. The relative sizes of the contact lengths of cadmium and magnesium
beams, however, do agree with those predicted by the static indentation studies. The
cadmium beams are less stiff in the transverse direction than corresponding magnesium
beams (note the relative values of C33 in Table 1). As such, impacting projectiles penetrate
more deeply into cadmium beams than magnesium beams which results in larger contact
lengths for the cadmium beams. This argument, however, cannot be extended to the
graphite/epoxy beams. Although graphite/epoxy beams are transversely softer than cad­
mium beams, the highly fibrous nature of graphite/epoxy prevents too much penetration
from occurring. The stiffening effect of the fibers tends to cancel the effect of the transverse
softness. This results in the peculiar contact length histories of the graphite/epoxy beams
shown in Figs 3, 5 and 9.

A check of the quasi-static nature of the problem and solution was made by calculating
average maximum rates of expansion of contact areas and comparing them with a charac­
teristic wave speed of the materials as defined in Ref. [37]

(65)

The results are presented in Table 6. It can be seen that the contact lengths expand much
more slowly than the speed with which waves propagate through the beams. In view of
these figures, the assumption of quasi-static response appears to be quite reasonable.

3. SECTION II: DYNAMIC IMPACT OF A CIRCULAR PLATE

3.1. Introduction
In this section we examine the low velocity impact of a rigid projectile on an elastically

supported transversely isotropic circular plate. The assumptions and simplifications
used in the previous section (i.e. local deformation is elastic and occurs quasistatically,
elastodynamic effects are neglected, etc.) are assumed to be valid for problems of plate
impact as well[38].
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The solution to the dynamic contact problem at hand is obtained as a superposition
of a static axisymmetric solution similar to the one developed by Keer and Miller[13] with
a dynamic plate theory solution[19]. Application of appropriate boundary conditions leads
to a Volterra integral equation that is again solved numerically. To assess the effects of
anisotropy on the plate's response, solutions are obtained for plates made of magnesium
and cadmium.

It is again noted that because the impact velocity is low, the approximations of
elementary plate theory are valid and should yield accurate results[39]. If the impact velocity
were high or the duration ofcontact very short, then corrections for shear and rotary inertia
would have to be incorporated into the analysis[40].

3.2. Problem formulation
3.2.1. Static axisymmetric solution. The boundary conditions for the layer solution are

those of an elastically supported axisymmetric layer of thickness h loaded on the upper
surface by a smooth axisymmetric rigid indenter

'tzz(r, h) = 0, O<r<oo (I)

'trz(r, h) = 0, O<r<oo (2)

'trz(r,O) = 0, O<r<oo (3)

'tzz(r,O) = 0, c<r<oo (4)

'tzz(r, 0) = -per), O<r<oo (5)

where c is the radius of the area of contact. The static plate boundary conditions are given
by

Uz = 0, Mr-Ker = 0, r= a (6,7)

where a is the radius of the plate.
The elasticity solution that represents loading on the upper surface of an axisymmetric

transversely isotropic layer and no loading on the lower surface is obtained by applying the
technique used in Section I to axisymmetric materials (see, e.g. England[41]) and is given
by

(8,9)

(10)

(11,12)

where the kernels K.(e) through Ks(e) are identical to those in Section I, eqns (9)-(13),
respectively. The normal and shear stress vanish automatically on z = h as does the shear
stress on z = O. The normal stress on z = 0 is given as

(13)

Substituting eqn (13) into eqns (4) and (5) and taking a Hankel transform yields
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E(~) = - (, rp(r)Jo(~r) dr.J, (14)

The moment and average slope due to this layer solution are given by

where

(15)

( 16)

and FW is as defined in Section I, eqn (23).
The static plate theory solution is taken in the form of a quadratic displacement

solution given by

( 18)

which results in a moment and average slope given by

(19,20)

where Dp* = h 3
(Cll +cI2-2d3/C33)/12. The constants A and B are obtained by applying

the plate boundary conditions to appropriately superposed plate theory and elasticity
expressions. The resulting values are

(21 )

where a.: = Ka/Dp* and G(~) is given by Section I, eqn (15). Following the same procedure
as in Section I, the total transverse deflection is given by

where

I
e 1 Ie

ut(r,O) = r'L(r, r')p(r') dr' + 2D * r'K(r, r')p(r') dr'
o p 0

(23)
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L(r r') - ~c5l [H(r-r') K(~) + H(r' -r) K(!-) _ ~K(~)J _a
2

_r
2

~c52 (24)
'-n r r r' r' a a 2a 2h l+oc*p

K(r,r') =100

Jo(~r') {2~:*C:'KI-1:2KJ[~~~~ -~VI ~~vJ [Jo(~r)-Jo(~a)]

_ a
2

- r
2
(Jo(~a) _ CII - CI2 B(~) J I(~a) + ocp*D p* [~V2 F(~) _ c5

2
]J' (~a))}d~

I +ocp* ~ C44a DW ~2 ah C44 D(~)

(25)

and 15 .. 15 2 are given by Section I, eqns (31) and (32). The functions K(P) are complete
elliptic integrals of the first kind.

3.2.2. Dynamic plate theory solution. Using a Laplace transform technique and a
normal mode expansion, the deflection of an axisymmetric circular plate initially at rest is
given by

1 00 Yn(r)la '1" ,uz(r, t) = -h L -*- r' Yn(r') p(r', t) sm [w:(t - t)] dt dr
P n=' W n 0 0

(26)

where w: = P; ~(Dt/ph), and D~ = h3
(CII -d3/C33)/l2. The normal modes Yn are defined

by

(27)

The coefficients An and frequency equations that yield the Pn for the edge conditions
considered in subsequent numerical calculations are given as follows:

simply supported edge

clamped edge

1 2 2 2
A 2 = a [JO<Pna)+J)(Pna)].

n

3.2.3. Superposition solution-integral equation for the dynamic problem. Superposing
the static and dynamic expressions for uz(r. t) yields



~90 W. P. SCHONIIERG Cl al.

rC(t) I rC(t)
uz(r,O, t) = Jo r'L(r, r')p(r') dr' + 2D

p

* Jo r'K(r, r')p(r') dr'

I i' iC

(') 00 Y (r) Y (r')
+ -h r'p(r',r) L -n-,f--sin[w:(t-r)]dr'dr.

p 0 0 n= I W n

In the contact region the governing equations are

2M i' iC

(')L\(t) = Vt - ~h (t-r) r'p(r',r)dr'dr.
pa 0 0

(21\)

(29)

(30)

As before, R is the radius of curvature of the projectile, M is the ratio of the mass of the
plate to that of the projectile, and V is the initial impact velocity. Substituting eqns (29)
and (30) into eqn (28) yields the integral equation for the impact problem '

i
C

(') 1 iC
(/)

r'L(r, r')p(r', t) dr' + -2* r'K(r, r')p(r', t) dr'
o D p 0

1 i' iC(T) 2M i' iC(T)
+-h r'p(r',r)M(r,r',r)dr'dr+~h (t-r) r'p(r',r)dr'dr

p 0 0 pa 0 0

where M(r, r'r) is given by

~ Yn(r)Y.(r') .
M(r,r',r)=L. * sm[w:(t-r)]..= I w.

(32)

3.3. Numerical solution
In solving eqn (31) numerically, the same scheme is used as in the two-dimensional

case. After perfonning the required manipulations, we have

where

N.

" A!k)p(k) = B(k)L..J I) J , ,
j= I

i= 1,2, ... ,Nk (33)

k- I { N, [1 <Xl Y (r.)l (r) 2M J}BW = Vtk -rl/2R- L L h L • .: J wW + ~h(L\r)rjwLI py)
1_ I j= 1 P .= I co. pa

iri +t>r
l

2 [ 1 ]
S(rj, rJ = L(rj, r') + 2D* K(rj, r') r'dr'

~-t>rl2 p

(34)

(35)

(36)
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Fig. II. Force history, simply supported plate, V "" I m s- I (--, magnesium; • - - - -, cadmium).

(37)

3.4. Elementary plate theory solutions
The impact times and maximum transverse displacements obtained in the solution of

eqn (33) are compared with those obtained using an elementary plate impact solution[42].
In this solution, the duration is found to be

to = 1t.J(k/mp - /32k 2/4) (38)

and the maximum displacement is given by

UO = Vm /3(1 _ /3ktO e-/lkIO/ 4) (39)
:,max p 21t

where /32 = 1/64phD~, mp is the mass of the projectile, and k is the amount of static force
required to produce a unit transverse displacement at the center of a circular plate. For the
edge conditions considered in subsequent numerical calculations, k is given as follows:

simply supported edge k = 161t(l +v*)D~/(3+v*)a2 (40)

clamped edge k = 161tD~/a2 (41)

where

v* = (CI2-cL/C33)/(CII-d3/C33)'

3.5. Observations and conclusions
Two materials were used in the plate impact study: magnesium and cadmium. For

each matcrial, solutions were obtained for simply supported and clamped edge conditions,
and for impact velocities of I and 3 m s- I; the mass ratio M was varied from 0.5 to 2.5.
In each case, the following geometrical parameters were used: R =40 em, a = 10 em, and
h = 0.25 em. As in the two-dimensional study, equations were solved and results were
obtained in terms of real parameters. If a non-dimensional solution is desired, it may be
obtained by solving eqn (31) after it has been nondimensionalized using a scheme similar
to that given in Section I. Real values may then be obtained from dimensionless curves and
numbers using Table 2, with h2 replacing h in the force scaling factor.

The numerical results are presented in the form of history curves and data comparison
tables. Figures II and 12 show contact force and radius histories for various mass ratios;
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Fig. 13. Contact pressure distribution; simply supported cadmium plate, M = 1.5, V = 3 m s- I.

Table 7. Maximum transverse displacement-plate impact (mm)

Magnesium Cadmium
Simply supported Clamped Simply supported Clamped

Plate Plate Plate Plate
M Elasticity theory Elasticity theory Elasticity theory Elasticity theory

0.5 2.044 1.583 1.129 t 3.886 2.817 2.036 t
V= I ms- 1 1.5 1.109 0.519 0.628 0.517 2.091 0.943 1.115 0.933

2.5 0.796 0.321 0.465 0.307 1.507 0.584 0.839 0.554

0.5 4.749 t 8.450 t
V= 3 m S-I 1.5 3.018 1.558 1.882 1.551 6.264 2.830 3.362 2.799

2.5 2.102 0.964 1.393 0.921 4.513 1.753 2.502 1.662

Fig. 13 shows an extreme case of a contact pressure distribution. Tables 7 and 8 show a
comparison between the numerical results and the values predicted by elementary plate
theory equations for maximum transverse displacement and duration of impact.

The results obtained in this section are similar to those obtained in the beam impact
study concerning the effect of impact velocity, mass ratio, edge support, anisotropy, etc. on
displacements, impact times, contact areas and forces. There are, however, several notable
differences.
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Table 8. Duration of impact-plate impact ( x 10- 2 s)

893

ElasticityElasticity

Magnesium
Simply supported Clamped

Plate Plate
M Elasticity theory Elasticity theory

Cadmium
Simply supported

Plate
theory

Clamped
Plate

theory

0.5
1.5
2.5

0.620
0.360
0.320

0.628
0.282
0.210

0.340
0.200
0.170

t
0.213
0.146

1.200
0.700
0.620

1.142
0.533
0.400

0.620
0.360
0.310

t
0.384
0.263

Table 9. Contact area rates of expansion-plate
impact (m s- I)

Simply
supported Clamped ct

Magnesium
Cadmium

7.0
7.5

12.0
15.0

3000
2000

Table 10. Calculated (Schonberg), predicted (Shivakumar), and measured (Lal)
impact forces and durations

Velocity
(m S-I) Schonberg Shivakumar Lal

Impact force 1.0 0.122 0.115 O.I04t

(kN) 3.0 0.367 0.463 0.512t
5.0 0.614 0.920 1.274t

Impact duration 1.0 0.00170 0.00215 0.00196t

(s) 3.0 0.00170 0.00173 0.00170t
5.0 0.00170 0.00144 0.00152t

First, there was no loss of contact between the projectile and the plate. This indicates
that even thin, simply supported plates are sufficiently stiff so as not to give rise to a double­
hit phenomenon. Second, in cases where the impact velocity was high or the mass ratio
large, the resulting pressure distributions were highly non-Hertzian, a characteristic not
seen in the two-dimensional study (see, e.g. Fig. 13). Third, when M < 1 it was observed
that the force and contact radius histories exhibited only two peaks, not three as in the two­
dimensional study. This indicates a more gradual build-up of stresses within the plate and
a slower release rate after the force maximum is obtained. As M increases the force and
contact radius history curves begin to resemble the curves obtained in the beam impact
study. It should be noted that the entries marked "t" in Tables 7 and 8 indicate that the
elementary plate theory solution predicts that in those cases the projectile will not rebound.
Since the plate theory predictions were derived using a linear spring constant, it is under­
standable that, in several of those cases, the full elasticity solution shows that rebound will
indeed occur. The entries marked "-" in Tables 7 and 8 indicate that the numerical scheme
is unstable in these particular cases.

Average maximum rates of expansion of the contact areas are given in Table 9. A
comparison of these figures with the characteristic wave speeds for the plate materials
reveals that the contact areas expand much more slowly than the speed with which waves
propagate through the plate. This again confirms the quasi-static nature of the problem
and its solution.

As a test of the validity of the solution technique presented in this section (and the
previous section as well), solutions were obtained using parameters of previous theoretical
and experimental studies of low velocity impact on circular plates (Ref. [43] and Ref. [44],
respectively). Numerical results for impact velocities of 1,3 and 5 m S-I are given in Table
10 (a number with a dagger next to it indicates an interpolated value). It is seen that
the elasticity solution developed in this paper agrees well with previous analytical and
experimental results for impact duration, but differs with the results for maximum impact
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force, especially at higher velocities. These discrepancies are probably due to several major
assumptions implicit in the solution developed here. First, the impact phenomenon is
assumed to occur elastically. Previous experimental studies have shown that composite
plates usually experience some plastic deformation near the site of impact[45]. Second,
small deformation theory is assumed valid in the construction of the static part of the
solution, Sections 2.2. J and 3.2.1. However, laminated plates have been found to undergo
large deformations and membrane stretching even when the impact occurs at low
velocity[44, 46]. Lastly, inertial effects have been neglected in the construction of the static
elasticity layer solution. Inclusion of such effects can be expected to alter peak forces as
well as durations of impact.

4. SUMMARY

The low velocity impact problems of a rigid smooth projectile striking elastically
supported transversely isotropic beams and plates are solved. The results obtained indicate
that the mass of the beam or plate significantly affects the dynamic response of the member.
While separation and double-hits occurred often in the two-dimensional impact study, it
was found that the increased stiffness of the three-dimensional problem prevented such
phenomena from occurring. In general, impact force, maximum transverse displacement,
and duration of impact were found to be directly proportional to the beam or plate mass,
and inversely proportional to the bending stiffness of the member. Contact area was found
to be inversely proportional to the transverse stiffness of the member. It should be noted
that inhomogeneous materials require special attention and that caution should be employed
in extending these conclusions to such materials. Finally, the solutions developed here were
found to yield results that agreed reasonably well with previous experimental test data.
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APPENDIX: INTEGRATION WEIGHTS

The weights II'~/, Wt/ and Wk/ are calculated by spanning the time domain with a series of Lagrange interpolation
polynomials. Their exact values depend on whether the current time-step is even or odd.

Even time-step: t. = k(~t), k = 2m, m ;;:: I
If the time-step is even, then Filon's formula is used to evaluate the integrals involvingf,,(t) in eqn (46). The

weights w~" Wt/ can be found in any standard handbook on numerical analysis. The weights w~/ are calculated by
spanning the intervals of the time domain with a series of quadratic interpolation polynomials, two intervals per
polynomial. Performing the indicated integrations yields

{
4(~t)2(k-/)/3 ... I odd

w~J =
2(~1)2 (k -1)/3 .. .1even.

(AI)

Odd lime-slep: t. = k(~t), k = 2m+ I, m;;:: I
If the time-step is odd, then a modified version of Filon's formula is used to evaluate the integrals involving

f.(1). Consider one of these integrals rewritten as follows:

II, 1"-' ii'f.(r) cos (w:r) dr = f.(r) cos (w:r) dr+ f,,(r) cos (w:r) dr.
o 0 '*_)

(A2)

Since t._ 3 is an even time-step, Filon's formula is used to evaluate the first integral on the right-hand side ofeqn
(A2). The second integral is evaluated by spanning the last three intervals of time with a cubic interpolation
polynomial. Performing the required integration, cqn (A2) can be written as

where

l
~ ·f,,(r) cos (w:r)dr = L w..,f,

o /. I
(A3)
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•,.~ _ 1.1 .•. I <:; I <:; k - 4

and

wL 3,k- ) - 1,.(1, _" I, _ ,,1.)/6(1''.1»)

wi, = 1",(1,_),1._ " 1,J/2(1'>/)'

- 1",(1,_ 3, 1.- ,,1.)/2(1'>1)'

1,,(1, _,. I, _" I, _ 1)/6(1'>1)3

.1 = k-3

... 1= k-2

... I=k-l

... 1= k

(A4)

1,,(rJ.,{i, y) = [F(rJ., fl, y; t)cos (w:1) + G(rJ., p, y; I) sin (w:/)]IL (AS)

F(rJ., p, y; I) = { -6+ [acp + Py+yac-2(rt.+ P+Y)I+3t'](w:)'j/(W:)4 (A6)

G(ac,{I, y; t) = {2(ac + fl +}')-ac/ly(w:)' [6- (acfl+ fly+yac)(w:)]I- (ac+ /1 + y)(w:I)'j/(w:)'. (A 7)

The integr,ll involving sin (w:r) is evaluated similarly with similar outcome. The weights W~, are given by eqns
(A4) with "s" rcplacing ''';'' in the firsl two and "sc" rcplacing "c" in the lasl four equations. The quantity
I,Arx, {I, y) is givcn hy

I",(ac, P, y) = [-G(ac, p, y; /)cos (w:1) + F(ac, p, y; I) sin (w:l)lIL·

The weights 1";, are evaluated using a similar approach with the results being

(A8)

Wk_3.J

1"; _3•• _ 3 +39(61)'/40

1";, = 27(61)'/10

27 (AI) , /40

3(61)'{20

... 1 <:; l<:;k-4

... 1= k-3

... 1= k-2

... f=k-I

... f = k.

(A9)


